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Introduction

• Chemical Reaction Engineering (CRE) examines the 
principles of energy transfer in reactors.

• This lecture focuses on reactors with heat exchange 
and user-friendly energy balance equations to 
optimize reactor design and operation.



Topics to be Addressed

• - Fundamentals of Reactors with Heat Exchange

• - Energy Balance Derivations and Assumptions

• - Adiabatic Operation and Heat Exchange Systems

• - Reversible Reactions and Temperature Effects

• - Practical Examples and User-Friendly Equations



Objectives

• By the end of this lecture, students will be able to:

• - Understand energy balance principles for reactors 
with heat exchange.

• - Apply energy balance equations to adiabatic and 
heat exchange systems.

• - Analyze reversible reactions and their temperature 
dependencies.

• - Use user-friendly equations to simplify reactor 
design and operation.



Introduction

• Heat exchange in reactors is crucial for controlling 
reaction rates and ensuring efficiency.

• This session includes discussions on adiabatic and 
heat exchange systems, constant and variable 
temperature profiles, and reversible reaction 
analysis.



Last Lecture 
Energy Balance Fundamentals
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• Reactors with Heat Exchange

• User friendly Energy Balance Derivations

• Adiabatic

• Heat Exchange Constant Ta

• Heat Exchange Variable Ta Co-current

• Heat Exchange Variable Ta Counter Current
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The feed consists of both - Inerts I and Species A with 

the ratio of inerts I to the species A being 2 to 1.

A          B
 

FA0

FI

 
Elementary liquid phase reaction carried out in a CSTR

Adiabatic Operation CSTR
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Adiabatic Operation CSTR
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 Assuming the reaction is irreversible for CSTR, 
A → B, (KC = 0) what reactor volume is necessary to 
achieve 80% conversion?

 If the exiting temperature to the reactor is 360K, 
what is the corresponding reactor volume?

 Make a Levenspiel Plot and then determine the PFR 
reactor volume for 60% conversion and 95% 
conversion. Compare with the CSTR volumes at 
these conversions.

 Now assume the reaction is reversible, make a plot 
of the equilibrium conversion as a function of 
temperature between 290K and 400K.



1) Mole Balances:
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CSTR: Adiabatic Example
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A          B
 

FA0

FI

 

Δ𝐻𝑅𝑥𝑛 = −20000
𝑐𝑎𝑙
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CSTR: Adiabatic Example
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4) Energy Balance 
 Adiabatic, ∆Cp=0
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CSTR: Adiabatic Example
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Irreversible for Parts (a) through (c)

( ) )K (i.e., X1kCr C0AA =−=−

(a)  Given X = 0.8, find T and V

 

Given X
Calc

⎯ → ⎯ T
Calc

⎯ → ⎯ k
Calc

⎯ → ⎯ −rA
Calc

⎯ → ⎯ V

 

Calc KC
(if reversible)

CSTR: Adiabatic Example
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Given X, Calculate T and V

CSTR: Adiabatic Example
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(b) VrkTXGiven Calc

A

CalcCalcCalc ⎯⎯→⎯−⎯⎯→⎯⎯⎯→⎯⎯⎯→⎯

CK Calc
(if reversible)
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Given T, Calculate X and V

CSTR: Adiabatic Example
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(c) Levenspiel Plot

( )X1kC

F

r

F

0A

0A
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−
=

−

 

Choose X
Calc

⎯ → ⎯ T
Calc

⎯ → ⎯ k
Calc

⎯ → ⎯ −rA
Calc

⎯ → ⎯ 
FA 0

−rA

X100300T +=

CSTR: Adiabatic Example
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(c) Levenspiel Plot

CSTR: Adiabatic Example
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CSTR X = 0.95 T = 395 K
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CSTR X = 0.6 T = 360 K

CSTR: Adiabatic Example
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PFR X = 0.6

PFR X = 0.95
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CSTR: Adiabatic Example
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CSTR X = 0.6 T = 360 V = 2.05 dm3

PFR X = 0.6 Texit = 360 V = 5.28 dm3

CSTR X = 0.95 T = 395 V = 7.59 dm3

PFR X = 0.95 Texit = 395 V = 6.62 dm3

CSTR: Adiabatic Example - 
Summary

20



( )

( )









+−=

−

=−+
−

=−+−







+

dV

dF
H

dV

dH
F

dV

HFd

TTUa
dV

HFd

VTTUaHFHF

i
i

i
i

ii

a

ii

aVViiVii

0

0

Energy Balance in terms 

of Enthalpy
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PFR Heat Effects
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Need to determine Ta

PFR Heat Effects



Heat Exchange: 

( )( ) ( )

iPi

aRxA

CF

TTUaHr

dV

dT
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−−−−
=

dT

dV
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FA0 åQiCPi
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Need to determine Ta



Energy Balance:

Adiabatic (Ua=0) and ΔCP=0
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Heat Exchange Example: 
Case 1 - Adiabatic
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A. Constant Ta     e.g.,   Ta = 300K

( )
)17(          0 , CTTV

Cm

TTUa

dV
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P
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cool
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−

=


B. Variable Ta Co-Current

C. Variable Ta Counter Current

( )
Guess   ?     0     ==

−
= a

P

aa TV
Cm

TTUa

dV

dT

cool


Guess Ta at V = 0 to match Ta0 = Ta0 at exit, i.e., V = Vf

User Friendly Equations
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Coolant Balance: 

In - Out + Heat Added = 0
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Heat Exchanger Energy Balance 

Variable Ta Co-current
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In  - Out  +   Heat Added = 0

Heat Exchanger Energy Balance 
Variable Ta Counter-current

28

( )

( )

( )
    

    

    0

0

PCC

aa

a
C

C

aVCCVVCC

Cm

TTUa

dV

dT

TTUa
dV

dH
m

TTVUaHmHm







−
=

=−+

=−+−
+



Elementary liquid phase reaction carried out in a PFR

The feed consists of both inerts I and species A 

with the ratio of inerts to the species A being 2 to 1.

Heat Exchanger – Example
Case 1 – Constant Ta
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Heat Exchange 
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Heat Exchanger – Example
Case 1 – Constant Ta
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( )0CP =
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Heat Exchanger – Example
Case 1 – Constant Ta
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Parameters:

A
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R
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0

021

21



Heat Exchanger – Example
Case 1 – Constant Ta
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PFR Heat Effects
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Energy Balance:

Adiabatic and ΔCP=0

Ua=0

( )
)A16(      

C

XH
TT

iPi

Rx
0



−
+=

Additional Parameters 

(17A) & (17B)
IAi PIPPi0 CCC ,T +=

Heat Exchanger – Example
Case 2 – Adiabatic 
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Mole Balance:

 

dX

dV
=

−rA

FA 0



 

 

Adiabatic PFR
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Find conversion, Xeq and T as a function of reactor volume

V

rate

V

T

V

X

X

Xeq

Example: Adiabatic
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Heat Exchange
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Need to determine Ta



A. Constant Ta (17B) Ta = 300K

Ua  ,C  ,T
iPia 

Additional Parameters (18B – (20B):  
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B. Variable Ta Co-Current

C. Variable Ta Countercurrent
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−
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P
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dV

dT

cool


Guess Ta at V = 0 to match Ta0 = Ta0 at exit, i.e., V = Vf

User Friendly Equations
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Coolant balance:

In - Out + Heat Added = 0
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a
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0
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=
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All equations can be 

used from before 

except Ta parameter, 

use differential Ta 

instead, adding mC 

and CPC

Heat Exchange Energy Balance 
Variable Ta Counter-current
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In - Out + Heat Added = 0

All equations can be used from before except dTa/dV which 
must be changed to a negative. To arrive at the correct 
integration we must guess the Ta value at V=0, integrate and 
see if Ta0 matches; if not, re-guess the value for Ta at V=0

Heat Exchange Energy Balance 
Variable Ta Co-current
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Differentiating with respect to W:

Derive the user-friendly Energy 
Balance for a PBR
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

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
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Mole Balance on species i:
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Enthalpy for species i:

Derive the user-friendly 
Energy Balance for a PBR
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Differentiating with respect to W:
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Derive the user-friendly
 Energy Balance 
for a PBR
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( ) 0
dW
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Final Form of the Differential Equations in Terms of Conversion:

A:

Derive the user-friendly Energy 
Balance 
for a PBR
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Final form of terms of Molar Flow Rate:
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Derive the user-friendly
 Energy Balance 
for a PBR
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The rate law for this reaction will follow an elementary rate law.

DCBA ++











−=−

C

DC
BAA

K

CC
CCkr

Where Ke is the concentration equilibrium constant. We know from Le
Chaltlier’s law that if the reaction is exothermic, Ke will decrease as the
temperature is increased and the reaction will be shifted back to the left. If
the reaction is endothermic and the temperature is increased, Ke will
increase and the reaction will shift to the right.

Reversible Reactions
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K P
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Van’t Hoff Equation:
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Reversible Reactions
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For the special case of ΔCP=0

Integrating the Van’t Hoff Equation gives:
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expTKTK

Reversible Reactions
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endothermic

reaction

exothermic

reaction

KP

T

endothermic

reaction

exothermic

reaction

Xe

T

Reversible Reactions
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Are you ready?



Summary

• In this lecture, we covered:

• - Energy balance fundamentals for reactors with heat 
exchange.

• - Adiabatic and heat exchange reactor design 
principles.

• - Analysis of reversible reactions and temperature 
effects.

• - Practical application of user-friendly equations.

• Heat exchange considerations are vital for optimizing 
reactor performance and efficiency.
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